Finite Difference Approximation of Homogenization Problems for Elliptic Equations

نویسندگان

  • Rafael Orive
  • Enrique Zuazua
چکیده

In this paper, the problem of the approximation by finite differences of solutions to elliptic problems with rapidly oscillating coefficients and periodic boundary conditions is considered. The mesh-size is denoted by h while ε denotes the period of the rapidly oscillating coefficient. Using Bloch wave decompositions, we analyze the case where the ratio h/ε is rational. We show that if h/ε is kept fixed, being a rational number, even when h, ε → 0, the limit of the numerical solution does not coincide with the homogenized one obtained when passing to the limit as ε → 0 in the continuous problem. Explicit error estimates are given showing that, as the ratio h/ε approximates an irrational number, solutions of the finite difference approximation converge to the solutions of the homogenized elliptic equation. We consider both the 1-d and the multi-dimensional case. Our analysis yields a quantitative version of previous results on numerical homogenization by M. Avellaneda, Th.Y. Hou and G. Papanicolaou [1].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Homogenization and Correctors

In this paper we consider numerical homogenization and correctors for nonlinear elliptic equations. The numerical correctors are constructed for operators with homogeneous random coefficients. The construction employs two scales, one a physical scale and the other a numerical scale. A numerical homogenization technique is proposed and analyzed. This procedure is developed within finite element ...

متن کامل

NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this article we have considered a non-standard finite difference method for the solution of second order  Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...

متن کامل

Flux Norm Approach to Homogenization Problems with Non-separated Scales Leonid Berlyand and Houman Owhadi

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L∞(Ω), Ω ⊂ R) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most gener...

متن کامل

Flux Norm Approach to Homogenization Problems with Non-separated Scales

We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general ...

متن کامل

2 00 9 Flux norm approach to homogenization problems with non - separated scales

We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L ∞ (Ω), Ω ⊂ R d) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2005